If it's not what You are looking for type in the equation solver your own equation and let us solve it.
13^2+x^2=19^2
We move all terms to the left:
13^2+x^2-(19^2)=0
We add all the numbers together, and all the variables
x^2-192=0
a = 1; b = 0; c = -192;
Δ = b2-4ac
Δ = 02-4·1·(-192)
Δ = 768
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{768}=\sqrt{256*3}=\sqrt{256}*\sqrt{3}=16\sqrt{3}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-16\sqrt{3}}{2*1}=\frac{0-16\sqrt{3}}{2} =-\frac{16\sqrt{3}}{2} =-8\sqrt{3} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+16\sqrt{3}}{2*1}=\frac{0+16\sqrt{3}}{2} =\frac{16\sqrt{3}}{2} =8\sqrt{3} $
| 7(b-8=3(b+12 | | 4-1/2c=1/4(3-c)+1/8c | | x−4=−16 | | 3x-1÷6x=2x-7 | | b+245=783 | | 3(6v-4)=-2(-10v-1) | | p−4=−16 | | -9(r-7)+9=2+5r | | -0.42=-0.07(t+4) | | m/3+0.5=8.1 | | 2x2–2=0 | | 2(10x-2)=2-12x-11 | | 4(3x-1)=4(x-1)+32 | | 2(x+3)-6=4(x+2) | | 13/7=x/4 | | -3(x-5)-7x=-12 | | 9x–10=x+46 | | 3(3x+5)=7x+4) | | X/12=9x/10-49 | | 4x-(-6)=2x-7=31 | | 3x-1+8x-20=180 | | -11.2x=-33.6 | | -5(x-4)-5x=-19 | | 3(x+4)=56 | | –5+2w–1= | | 11-14x+18+30x=4x-12+23+6x | | 5x-3+21-x=180 | | 5(2x-4)-8=3(x-6) | | 5(2x+-1)=35 | | 2x+4=4x-38 | | 13x-4-6x-(-5)=12 | | 5/x-7/5=4/5x |